Cauchy Inequalities for the Spectral Radius of Products of Diagonal and Nonnegative Matrices
نویسنده
چکیده
Inequalities for convex functions on the lattice of partitions of a set partially ordered by refinement lead to multivariate generalizations of inequalities of Cauchy and Rogers-Hölder and to eigenvalue inequalities needed in the theory of population dynamics in Markovian environments: If A is an n× n nonnegative matrix, n > 1, D is an n× n diagonal matrix with positive diagonal elements, r(·) is the spectral radius of a square matrix, r(A) > 0, and x ∈ [1,∞), then rx−1(A)r(DxA) ≥ rx(DA). When A is irreducible and ATA is irreducible and x > 1, then equality holds if and only if all elements of D are equal. Conversely, when x > 1 and rx−1(A)r(DxA) = rx(DA) if and only if all elements of D are equal, then A is irreducible and ATA is irreducible.
منابع مشابه
Cartesian decomposition of matrices and some norm inequalities
Let X be an n-square complex matrix with the Cartesian decomposition X = A + i B, where A and B are n times n Hermitian matrices. It is known that $Vert X Vert_p^2 leq 2(Vert A Vert_p^2 + Vert B Vert_p^2)$, where $p geq 2$ and $Vert . Vert_p$ is the Schatten p-norm. In this paper, this inequality and some of its improvements ...
متن کاملBounds on the spectral radius of Hadamard products of positive operators on lp-spaces
Recently, K.M.R. Audenaert (2010), and R.A. Horn and F. Zhang (2010) proved inequalities between the spectral radius of Hadamard products of finite nonnegative matrices and the spectral radius of their ordinary matrix product. We will prove these inequalities in such a way that they extend to infinite nonnegative matrices A and B that define bounded operators on the classical sequence spaces lp.
متن کاملEla Bounds on the Spectral Radius of Hadamard Products of Positive Operators
Recently, K.M.R. Audenaert (2010), and R.A. Horn and F. Zhang (2010) proved inequalities between the spectral radius of Hadamard products of finite nonnegative matrices and the spectral radius of their ordinary matrix product. We will prove these inequalities in such a way that they extend to infinite nonnegative matrices A and B that define bounded operators on the classical sequence spaces lp.
متن کاملThe Sign-Real Spectral Radius for Real Tensors
In this paper a new quantity for real tensors, the sign-real spectral radius, is defined and investigated. Various characterizations, bounds and some properties are derived. In certain aspects our quantity shows similar behavior to the spectral radius of a nonnegative tensor. In fact, we generalize the Perron Frobenius theorem for nonnegative tensors to the class of real tensors.
متن کاملPERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES
We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.
متن کامل